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MANIFOLDS WITH PLANAR GEODESICS

JOHN A. LITTLE

Theorem. Let M be a connected submanifold of some Euclidean space ;
dimension M > 2. If every geodesic of M lies in a 2-plane, then M is either
an open subset of an n-plane or is congruent to a dilatation of an open subset
of S, RP", CP", QP" or OP*. Here S™ is the unit sphere and the others are
particular submanifolds to be described.

This paper is a continuation and in a sense a completion of the work of
Sing-Long Hong [3]. Lemmas and propositions numbered 2 through 13 are
essentially due to Hong. We have included them in some cases in order to
clarify his work and in other cases to make our paper self-contained.

Denote by F either the real R, complex C, or quaternion Q, fields or the
algebra of Cayley numbers O. On F the Euclidean inner product may be writ-
ten f,-f, = ¥({f, + £, fi,f. € F. Let M*(F) be the n X n matrices over F.
It is a Euclidean space with inner product M,-M, =  trace (M,M; + M,M?)
where M: (i = 1, 2) is the transpose of the matrix M;. The manifolds FP™ listed
in the theorem may be defined as follows: FP" = {M ¢ M"*\(F)|M = M¢,
M = M*, and rank M = 1}. Note that when F is O we only define OF?.

When F is R, C or Q it is well known that the manifolds given are embedd-
ings of the abstractly defined projective spaces FP*. In the case of the Cayley
plane OP?, one often takes this as the definition. It is also an embedded sub-
manifold of Euclidean space.

Proposition 1. The submanifolds of RP™, CP*, QP" and OP* given above
all have planar geodesics.

Proof. Llet Fbe R,C or Q. Any Hermitian symmetric matrix over F can
be put in diagonal form by a change of basis. The diagonal form of a rank 1
matrix has a zero everywhere except for one element on the diagonal. Thus
any Hermitian symmetric rank 1 matrix over F can be written (f,f,) for f; ¢ F,
1<i<n+ 1. ¢: F**'— M*\(F), defined by ¢{f,, - - -, fr.) = (f:f;), maps
F™*! onto the Hermitian symmetric rank 1 matrices. For a matrix M = (f,f,)
a simple computation shows that M* = (trace M)M. Hence M = 4(f,, - - -, fz.))
satisfies M? = M if and only if trace (f,;f;) = 1, which is true if and only if (f,,
-« -, fn,1) lies on the unit sphere in F**'. Thus ¢ maps the unit sphere in F**!
onto the previously defined FP*. Also ¢(f,, - - -, fryd) = ¢(FiW, - - -, fr W) for
any unit vector w in F. Hence ¢ maybe defined on the abstract projective space
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over F, ¢: FP* — M™*!(F). ¢ is an embedding of the abstract FP* onto the
embedded submanifolds previously defined. If 4: F**! — F®*! s a linear trans-
formation such that 4 4* = 4'4 = I we say A is orthogonal (for F). We may
check that p(4v) = Ap(v) A* for v e F**!, The mapping which sends M ¢ M**'(F)
to AM A, where A4 is orthogonal, preserves the inner product in M***(F) and
so is a Euclidean motion. Now the orthogonal transformations on F*** give
projective transformations on FP”. Hence the equation ¢(A4v) = Ap(v) A* shows
that any projective transformation of ¢(FP®) arising from an orthogonal transfor-
mation of F**! can be accomplished by a Euclidean motion of M"**'(F). For
this reason ¢ is said to be equivariant. The identity }, ; (f.f j)(fz-—f;) = (3; f;f)?
and the fact that 3, f,f; = 1 show that o(FP~) lies on the unit sphere about
the origin in M™**(F).

A projective line in the embedded manifold is a sphere of dimension 1, 2, or
4 according as F is R, C, or Q. It suffices using the equivariance to check
this for just one projective line, say ¢(f;,f,, 0, - --,0). Let M = (m,;) be the
coordinates in M™*'(F). Then my, = |f,}}, my, = fif,, My = f.fr, My = [fof’, the
other m;; = 0 and |f,F + |f,/ = 1. So within the linear space m,; = O for i, j
not both 1 or 2, the projective line is the intersection of the sphere

[m,F + [l + |my — 3P + iy, — 3 = 3

with the linear spaces my, = 7;, 11, = iy, My, = My, My — 3 = — (M, — ).
These linear spaces pass through the center of the above sphere so that the
projective line is a sphere of radius 1/+/ 2.

Since any pair of points lie on a projective line, all the projective lines, i.e.,
real spheres, through a given point cover all of ¢(FP%).

Geodesics of ¢(FP™) are the great circles of the projective lines (i.e., real
spheres). To see this it suffices to show that a line from the center of any sphere
to any point on the sphere meets o(FP™) normally at that point. By equivariance
it suffices to show this for one particular point and one particular projective line
through that point.

Let the point be P = (1,0, ---,0). Let L; = ¢(f;,0,---,0,f,,0,---,0),
i=2,---,n+ 1, be a set of projective lines through P. Then the tangent
planes of L, (as real spheres) span (and in fact give a direct sum decomposition
of) the tangent space of ¢(FP*) at P.

Let span L, be the plane spanned by L,, and let T be the tangent to the unit
sphere about the origin (which contains ¢(FP%)) at P. It is not difficult to check
that T N span L; are completely orthogonal spaces meeting just at P. Thus the
line from P to the center of L, is normal to 7 () span L,. (Consider the com-
ponents along 7 and normal to 7.} But T () span L, contains the tangent plane
to L; at P. Hence the line from the center of L, to P meets each L; orthogo-
nally at P, and so it meets ¢(FF") orthogonally at P.

As for OP?, the Cayley plane, consider first the 3 X 3 Hermitian matrices
over 0. They are of the form
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my my, Mg a, X3 X
— A — J -
M=M= |m, m, my|l=\% a x|,
My My Mg X, X a

where a; are real and x; € 0. They form a Jordan algebra J with Jordan product
M, -M, = (MM, + M,M)). The group of automorphisms of J is a real form
of an exceptional Lie group F,. OF? is the set of rank 1 matrices of J such that
M? = M. Defining equations are a,; = x3Xy, Qx%p = X;%;, 4, + @, + a, = 1,
for (i,7,4)=(1,2,3),(2,3,1) or (3,1, 2). F, acts transitively on pairs of polar
points. Points M,, M, are polar if trace (MM, + M,M)) = 0. For any point
M, there is a projective line, the polar line, which is the locus of all points M,
such that M M, are a polar pair. J has real dimension 27 and OP* real dimen-
sion 16. For the above material concerning QP? see Freudenthal [1].

Using the defining equations of OF? we see that 3, ; m, 7, ; = (a, + a, + a;)*
= 1. Hence OF" lies on the unit sphere in J about the origin.

For ¢e F, we have }(¢(M,) oM, + eM)eM)) = (MM, + M, M)
because ¢ is a Jordan algebra automorphism. Hence it is surely true that
trace (p(MDe(M,) + o(M)p(M,)) = trace (MM, + M,M,). Hence F, preserves
polarity, i.e., sends polar points into polar points. Now J, as a set of Hermitian
symmetric matrices, is a linear subspace of M*(0). On J the Euclidean inner
product may be written M,-M, = }trace (M,;M, + M,M)) because M = M’
on J. Hence the elements of F, are Euclidean motions on J.

Because F, is transitive on polar pairs of points, it is also transitive on
“pointed” projective lines. Namely, if L,, L, are any pair of projective lines,
and P, e L,, P,e L, are points on those lines, then there is an element of F,
sending P, to P, and L, to L,. Let P; be the polar of L,, and P; the polar of
L,. Then the required element of F, is the element sending the polar pair P.P;
to P,P;.

Using the defining equations of OP* we see that the polar line of the point

000

(0 0 0) is the line m,;, = a,, my, = X3, My = X,, My, = a,, the other m;; =0,
001

and a, + a, = 1, a,a, = x,%,. As before the projective line is the intersection

of the sphere

Jml?lz + IleIZ + jrmy — %‘Iz + ]mzz - %IZ = 717

with the linear spaces my; = 7y, My, = Mgy, My, = My, My — 3 = — (M — ).
Hence the projective line is a real 8-sphere of radius 1/+/ 2. Thus because F,
is transitive on projective lines, every projective line is a real 8-sphere of radius

1/4/2.

The geodesics of QP* are the great circles of its projective lines. As before
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it-is enough to show that for any projective line L and any point P on L, the
line from P to the center of L, as a real 8-sphere, is a normal line to OP* at P.
Because F, is transitive on “pointed” projective lines, it is enough to show this

100 a, x; 0
when P is the point {0 O 0| and L is the line |X; a, 0}, where a, + @, =
000 000

1, aja, = x,X,. Let P’ be the polar of L and L’ the line joining P’ and P, and
T the tangent to the unit sphere with the origin as center at P. Then it is not
difficult to show that T M spanL and 7 N span L’ are completely orthogonal
spaces meeting just at P. Thus the line from P to the center of L must be
orthogonal to the tangent planes of L and L’ (as real 8-spheres) at P and hence
orthogonal to the tangent plane of OP? at P. This completes the proof.

Let pe M, and let y be a curve on M with tangent vector ¢ at p. Then the
component of the second derivative of y normal to M at p we call 7(#). (It is
well known that this normal component depends only on ¢ and not on the
specific parametrized curve y.) Thus 5: T, — N, gives a map from the tangent
space of M at p to the normal space of M at p, and this map is in fact a
quadratic form. We will also use 7 to denote the associated bilinear form
7: Ty X Tp— Ny, (sothat 5(z, 9) = 5(2)). We call 5 (in either sense) the second
fundamental form of M at P.

Proposition 2. If all the geodesics through a point of M are planar, then
all those geodesics have the same curvature at that point. Here curvature means
as a plane curve, not geodesic curvature.

Proof. Let p be the point through which all geodesics are planar. We first
show that 5{(l))-»(l;, 1) = O for any orthonormal pair of tangent vectors [, I,
at p. Let y(s) be a geodesic through p in the direction /,, s the arc length from
D, and let [,(s) be a parallel (in sense of Levi-Civita) tangent field to M along
7 and normal to y such that [,(0) = [,. Then »{l) = d*/ds*(0) and 5(l,,1,) =
dl,/ds(0). Since y is a geodesic, d*y/ds? is normal and therefore 4% /ds*-1, = 0.
If d%/ds*0) # O, then we may write d%/ds® = ad’/ds* + bdy/ds. Thus
dr/ds*-1,=0. Now 0 =d/ds(d%/ds*-1,) = d’[ds’- I, + d* [ds®-dl,] ds. Hence
d*yjds®-dl,/ds = 0 so that p(I) -5, 1) = 0.

As this is true for any orthonormal pair /,/,, we must have

p(l,cos 8 + I,sinf)-p(l,cos @ + I,sinf, —I sinf + l,cosd) =0

for all #. From this, using the bilinearity of » and double angle formulas we
obtain

oW, 1) — (1) — 7())H sin46 + LHp(l)* — 7(1)?)sin26 = 0 .

Hence 7(l,, L)* — 3(() — 7(1))* = 0 and 7(L)* = 7(,)*.
Now using the bilinearity and double angle formulas again
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(p(lycos & + I, sin §))* = (G () — 7)Y — 7(,, L)) cos 46
+ 1(()* — p)») cos 26 + Q) + 7(1)))?
+ $GOI) — pIN: + 7y, L)Y .

Hence 7* is constant for all unit vectors in the plane of [,[.

Finally given any unit vectors /,, /,, not necessarily orthogonal, »* is constant
on all unit vectors in their plane, so in particular 7*(I;) = »*(l,).

To finish we note that |»(l))|, /; a unit tangent vector, is the curvature of the
geodesic through p in the direction /; at p.

Proposition 3. Let y(t) be a curve of M, and y,(s) a 1-parameter family of
geodesics of M passing normally through v, that is, 7,(0) = y(t) and dy,/ds(0)
-dy/dt(®) = 0. If the geodesics y, are planar, then they all have the same
curvature as they cross y, that is, if s is the arc length then |d%,/ds(0)| is
constant in t.

Proof. Let X(s,1t) = 7,(s) be considered as a surface in M. If we prove
the curvature is constant in neighborhoods of points where dy,/ds, d%,/ds?
are independent, that will suffice because the constant will be nonzero. Hence
the intervals where dy,/ds, d%,/ds® are independent will be both open and
closed and so all of y. If there is no point on y where dy,/ds, d%,/ds* are in-
dependent, then of course the result is true.

Now since X(s,?) is a geodesic parametrized by the arc length for fixed ¢,
we see that X is a unit tangent vector, i.e., X,- X, = 1. By differentiating with
respect to ¢ we find that X,- X, = 0. Next 9/05)(X;-X,) = X;-X,, + X, - X..
But since X(s, ¢) is a geodesic for fixed 7, X, is normal so X,-X, = 0. Thus
(8/as)(X;-X,) = 0, and since X;-X, = 0 for s = 0, it holds for all s, z.

Because the 7 held constant curves are planar, we may write X, = o X, +
BX,; at a point where X, X, are independent. So using the above we have
X+ X, = 0. Differentiating X;-X, = O with respect to s and using X - X,
= 0 we obtain X,-X,, = 0. Again because X, = aX; + X, we have

X Xy = aXs'Xst + .BXss'st =0.

Differentiating X, - X, with respect to s and using X-X; = 0 we see that
X, X, = 0. Hence (6/00(X,5- X)) = 2X,,-X,s = 0. This implies that
(X5(0, 1)), which is the square of the curvature of y, at the point where it
crosses 7y, is constant.

Proposition 4. If all the geodesics of M are planar, then either M™ is con-
tained in an n-plane or else all the geodesics are circles of the same radius.

Proof. Let g(p) be the curvature of any geodesic passing through p at p.
By Proposition 2, g is well defined. By Proposition 3, g is constant along curves
and hence constant on M. Thus each geodesic has constant curvature and so
is either a line or a circle. Furthermore all geodesics have the same curvature,
so they are either all lines or all circles of the same radius.
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We now suppose that M™ is not contained in an n-plane. We perform a
dilatation of the Fuclidean space to make all the geodesics circles of radius 1.
We see that for manifolds all of whose geodesics are circles of radius 1,
7%(l,) = 1 for any unit tangent vector /,. From this, using the fact that »(al) =
(1)) we have %) = (¢9)? for any tangent vector 1.
Lemma 5. () = (19" for any tangent vector t has the following impli-
cations. For any orthonormal pair 11,

)9, L) =0, 99l + 290, 1) =1,
for any orthonormal triple 11,1,
9 -9y, 1) + 29, 1) -9, 1) =0,
and for any orthonormal quadruple 11,11,
9, ) ps, 1) + 5, L) -, L) + 9, L) -9, 1) = 0.

Of course the statements can only be made if the dimension is appropriate
(i.e., dimension > 4 for quadruple, etc.).

Proof. Lett = xl, + x,0, + x,l, + xl,, (x, = 0 for dimension < 3, etc.)
Then ## = x; + x3 + x5 + xi, and () = X234 ;- x.x;-5(;, [;) by the bilinearity.
Hence

4 2
(_z xixm(zz-zp) R S

2,5=1

Equating coefficients gives the result.
Lemma 6. Let [, I, be orthonormal vectors with the property that 5(l) - (I,
) = O for any unit vector I, normal to I, and I,. Then 5(l))-7(l) = L or 1.
Proof. Since geodesics are circles of radius 1, the manifold may be written

X(r, ) =X(p) + A —cosrp(l) + Lisinr,
where r, [, are geodesic polar coordinates, and I/, € T.S%~* is a unit tangent vector

at p. Let [, - --,1, be orthonormal vectors, normal to [,, defined in some
neighborhood on 7T'S3*.

700D = Sl €080 + Ly sin ) .y

— %((Cosz 8)p() + 2 (cos 8 sin O, 1) + (sin? O)7(1)) lo—o

=27](ll7lz) fOI'i:Z,...,n.
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a .
() = _d¢9777(ll cos @ + Lsin ) |,_,

- Fd;—((cosz 0)77(11) + 2(cos ¢ sin 0)7(11’ lz) + ('Sirl2 6)77(12)) |o=o

= 2(p(I) — (1)) .

Hence

X, (r,[) =0 —cosny, ) + I, sinr
= 2(1 — cos Ny, ;) + I;sinr,
Xlzlg(r’ 4) = (1 — cos 7)771212(11) + lllglz sinr
= 2(1 — cos () — (1)) — Lsinr,
X,(r, 1) = (sinr)p() + L cosr.
X,,-X =0 for i=2,--.,n because 5(l)-5{,!) =0 by Lemma 5. So
X0, Xy, = 40 — cos ¥y, 1)- () — 7)), i=2,---,n. By Lemma 5,
() -p, 1) =0fori=2,-.-,nand 5(, ) -p(l) = 0. Thus, if »() -5, 1)
=0 for i=3,--.,n we have X,,;,-X,, = 0. Since the conclusion of the
lemma is symmetric in /, and /,, we may interchange the roles of [, and /,

throughout the proof. We then require that (1) . 9(l,, [;) = Ofori = 3, -- -, n,
which is the hypothesis. Hence X,,;,- X;, = 0.

X0, X, = 2(1 — cos )(sin Nyl - (7l — n())) — sinrcosr .

Also X,- X, = 1 because r is the arc length. Hence X7},, = X,,;, — (X,,;,- X )X,.
(N means normal component.) Now 5(#)* = (¢%)* for any tangent vector z. When
t = X, (r, 1) we see that 9(t) = X7,,. Thus (X7,) — (X;) = 0. But X7}, =
X1, — (X4, X)X, which implies (X%, ) = X%, — (X;,;,- X,)*. From above
computations
X3, = 4(1 — cos (5l — »p()) + sin’r,
X3, = 4(1 — cos (I}, 1,)* + sin’r .
From Lemma 5, () -75(1,) + 27(,,1)* = 1 so
X: = 2(1 — cos (1l — p(l)-7()) + sin’r .
Thus
0= X%m h (X1212~X,)2 - (X?z)z
= 4(1 — cos ry’(yly) — n(1))* + sin’r
— (21 — cos r) sin r(n(l)-5(l,) — 1) — sin r cos r)?
— 21 — cos ¥l — 5l -nUyY) + sin?r)* .
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This after some simplification gives
0 = 4(1 — cos r)*(1 — (L) -pINC2p) -9 — 1),

which must hold for all . This concludes the proof.

For any unit tangent vector [, let a(l})) = {t e T, |5(t/|t]) = »(l) or t = O}.

Proposition 7.  «(l)) is a linear subspace of T,.

Proof. Suppose [, is a unit vector such that [, A I, 0. Let I, be a unit
vector in the plane of [/, and normal to /,. We may write [, = al, + bl,, a* +
b* =1, b 0. Then

() = a*y(l) + 2aby(l, L) + b*p(ly) .

By Lemma 5, 5(l,)-7(,, L) = 0 so n()-5(l) = & + b5(l)-5(l). Because &
+ b*=1, b#0 we see that p([})-9p()) = 1 if and only if »()-7(l) = 1.
Hence [, € a(l)) if and only if I, € «(l;). Thus, if any tangent vector ¢ € a(J;) then
span (¢, ) C a(l,). Hence it suffices to show that the vectors in «(l,), which are
orthogonal to.];, are a linear subspace of T,.

So suppose [,, I, € a(l,) are unit vectors and ,- I, = [,-1, = 0. Since 1,, [; € a(l),
we have 7(l,)-p(l)) = »p(l))-7(l;) = 1 and therefore 7(L, 1)) = »(;, ) = 0 by
Lemma 5. Thus wp(al, + bl, L)) = ay(l,, ) + by, I) = 0. Let I, = (al,
+ bly)/|al, + bl,|. Then (I, 1) = 0 and [/, are an orthonormal pair. Thus by
Lemma 5, p(I)-5(l,) = 1 so that [, € «(l;). Hence al, + bl, ¢ a(l) for any a, b,
which concludes the proof.

Remark. If X is a point of M and /, a unit tangent vector, then the geodesic
through X in the direction /, is centered at X + 7(/;). Thus all geodesics through
X tangent to «(/,) have the same center. Thus all geodesics through a point,
which have the same center, fill out a sphere.

Let S(I,) be the unit vectors in «(/;)+, the orthogonal complement of «(l,).
Let f,,: S(,) — R be defined by f,,() = »()-7D.

Lemma 8. Let [, be a critical point of f,,. Then

99, L) = 0

for all unit vectors l; orthogonal to 1, and 1,.

Proof. Suppose ; € a(l), I, a unit vector. Then »(I,) = »(l,), which implies
7)) () = 1. Using Lemma 5 we have 5(l)-9(l,) + 29(},;)* = 1 so that
7y, ) = 0. Again by Lemma 5, n(l) -9 1) + 29, 1) -9(l, ) = 0. Hence
7](11)'77(123 L) =0.

Suppose [, € a(l})*. Then the derivative of f, (I, cos § + [, sin §) with respect
to 6 at § = 0 is 0 because [, is a critical point of f,,.

f(l;cos 6 + Iy sin 8) = p(l))-9(l, cos § + [, sin 6)
= p(l) - ((cos* (1) + 2 (cos 8 sin p(l,, L) + (sin? O)n(ly)) .
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S0 0 = df,,/df |ymo = 29(1) -7k, 1.

Now in general any [, may be written [, = [, cos @ + [;sin 4 for [, € a(l),
l; € a(l)*. Since [;-I, = 0 and [,-[; = 0, we must have [-I, = 0. Since [,-1,
= [,-I, = 0, we must have [,-], = 0. Thus by the previous cases 5({,)-5(L, [;)
=0,i=4,5. Hence

) -9y, 1) = (cos O)p(l) - (s, L) + (sin O)p(l) 9Ly, 1) = O .

Lemma 9. Let [, 1, be orthonormal tangent vectors. Then I, ¢ o(1)* if and
only if n(1)-7(0) = 3.

Proof. Suppose [, € a(l,)*. If [, is a critical point of f,;,, then Lemma 6 and
Lemma 8 show that (1)) -5(l) = % or 1. But 5(1,) . 5(l,) = 1 implies »(l,) = 7(l,)
and so [, € @(l)). So the assumption [, € a(l;)* shows that »(I)-7(l,) = +. But
the critical points of f;, include both its maximum and minimum points. Hence
(1) -7(D) = f,,() = § for all [ in the domain of f; which is all unit vectors in
a(l)*.

Now suppose p(l) -7(l,) = %. Write [, = al; + bl,, where [; ¢ a(l)), I, € a(l)*
and a* + b* = 1. Then »(I,) = »(l;) and by the first part ([,) - p(I,) = 4. Hence

ol

¥ = 9(l) -9l = 5y -5l = n(l)-nlal; + bl)
= (- (@*y(ly) + 2aby;, 1) + bp(l)) = a* + $b* .

Here 5(1)-5(%;, 1) = O by Lemma 5. So § = a* + }b* and & + b* = 1, which
give a = 0. Thus [, € a(I)*.

We call a linear subspace L of T, closed with respect to « if le L implies
a(l) € L for any unit vector [.

Lemma 10. If L is closed with respect to a, then L+, the orthogonal com-
plement, is also closed with respect t0 «.

Proof. Takel, e L+ andl, € «(l,). Then we may write [, = al, + bl,, I, c L,
LeLt, @ + b= 1. 5(I) = p() = a*p(ly) + 2aby(,, 1) + b(l,). Since L is
closed with respect to o, we have «(l;) C L, sothat [,], € «(l,)L. ByLemma 9,
()9l = () -9(y) = §. Thus § = ) -yl = & + 2aby(ly) -7, 1) + 3%
By Lemma 5, 5(l)-7(l,, I,) = 0. So ¥ = & + 3b*, which together with a* + b*
= 1 gives @ = 0. Hence [, e L*.

Lemma 11. Assume all the orthonormal vectors below satisfy I; e a(l;) or
I, e all)* for any i,§, i = j. Then: for any unit vector

pd)t=1;

for any orthonormal pair

[very

ifl,eal,),
¥ if I, e a(l)*,

() -9y = {
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0 ifheal),
ln lz =
76 b {% i 1 e i)t
ﬂ(ll) ‘ﬂ(ln lz) =0 >

for any orthonormal triple
) 1) =0,  p, L9, L) =0;
for any orthonormal quadruple
7 1) s, 1) =0,

iflieally) orlye (1), orif l; e all)* for all i,j, i = j.

Notice that we have not covered all cases for an orthonormal quadruple of
vectors.

Proof. x(l,)*=11if I, is a unit vector because geodesics are circles of radius 1.

Let I, I, be orthonormal vectors satisfying the conditions of the lemma. If
4, e aly), then 5(l) = 5(l) so 7n()-pl,) = () = 1. If [, € a(l,)L, then by
Lemma 9, 5{l)-5() = %. Since »{)-7() + 2»(, 1)) =1 by Lemma 5,
5L, 1,)* = 0 or % according as [, € «(l,) or I, € a(l,)*~. Also (-5, ;) = 0 by
Lemma 5.

Let [,l,l, be an orthonormal triple satisfying the conditions of the lemma.
Assume [, € a(l})*. From Lemma 9 we see that 5(l,) - »() = % for all unit vectors
I e a(l))*. Hence the function f, of Lemma 8 is constant so that every point of
its domain is a critical point. But since /, € a(l))*, [, is in the domain of f,, and
hence a critical point of f,,. Thus by Lemma 8, 3(I,) - 5(,, I;) = 0. Next assume
L, ¢ a(l). Use Lemma 5 to write

7 -9y, L) + 29, L) -y, 1) = O .

From above if [, ¢ a(l)) then 5(l,, I) = 0 so y(I,) -9, L) = 0. Now 5(,, 1)
-9}, I;) = O for any triple satisfying the conditions of the lemma by Lemma 5
and the fact that 5(J)) -y(l,, ) = O.

Next let 1,1l be an orthonormal quadruple such that [, ¢ a(l;)1 for 1 < i,
j < 4. In particular 1], are in a(I;)*~ and a(l,)*+. Hence (I, + L)/+/ 2 is in a(l,)*
and a(l)*. Using Lemma 9 we see that [; € a(l;)* if and only if I, ¢ a(l))*.
Thus (, + L)/+/ 2,1, 1, are an orthonormal triple satisfying the conditions of
this lemma. Hence 5((l, + 1)/+ 2 )93, 1) = 0. Also since [[[,], and L1l are
triples satisfying the conditions of this lemma, we have »({))-5(, ) = O and
) -ps-1) = 0. So

0= 77((11 + lz)/ﬁ)'ﬂ(lsa )
= (@) + p, L) + $U)) -7l L) = 7, L) -9, 1)
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It [, € a(ly) then 5(l}, [,) = 0, and if I; € a(l,) then 5(J;, I,) = O. Hence in these
cases also p{l;, ,) - p(L;, ,) = 0. This finishes the proof of Lemma 11.

Lemma 12. If L, and L, are completely orthogonal subspaces of T, both
closed with respect to «, then their linear span is also closed with respect to a.

Proof. Let!lespan(L,, L, be a unit vector, and let I’ be a unit vector in
a(l), I ¢ a(l). Then we may write

I!'=al, + bl, + ¢l ,

where ;e L, l,e L, and [, e span(L,, L,)* are unit vectors and a* + b* + ¢*
= 1.

7N = ylal, + bl, + ¢l
= a’ply) + bl + c*ply) + 2abn(l;, 1)
+ 2acy(ly, L) + 2ben(l, 1)

Since L, and L, are closed with respect to «, [; € a({)+ and [, € a(l,)*+. Thus
() -9(l) = % and 5(l) -9y = . So

)9l =38 + 30* + =4 + 3.

On the other hand [ ¢ span (L,, L,) can be written [ = rl, + si, where [, e L,,
l; e L, are unit vectors and 7> 4+ s* = 1. Thus

7](1) = 7](7'14 + sly) = 727](14) -+ 2757](l4a I+ 527](15) .

Again because L, and L, are closed with respect to «, we must have [, € a(l)+
and [, e «(l;)*. Hence

pl) = 37 + 3 =

But () = p(I) so 3 = % + 3c* giving ¢ =0 and I’ = al, + bl,. Thus l'¢
span (L,, L,) which concludes the lemma.

Proposition 13. For any unit tangent vector 1, at any point p, the dimen-
sion of a(l)) is the same. We call it a.

Proof. Let a(l)) be the dimension of «(l,). We will show that

7)) -H =% + 3aly/n,

where H is the mean curvature vector. The result follows from this because
»(l) - H is continuous on the unit tangent bundle and a(l,) is integer-valued.

Choose orthonormal tangent vectors [, - -, 1, so that [, ---, [, span «(l).
Then H = (1/n) X7, 7(;) so that

) -H =
n

i=1

P00 + = 5 )t .

T=a
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Now 5(l) = 9() fori=1,.---,aso 5()-7()=1. Fori=a+1,---,n,
I; € a(l)+ we have y(I))-5(l;) = 4 by Lemma 9. Hence

) H=242=-9,
n 2n

which concludes the proof.

The quadratic form 7 : 7, — N, sends a linear space of dimension a, say a({),
into a line, the line through (/). Hence the rank of the Jacobian of » must
fall by a — 1 at every point of T,

Now if L is a linear space of T, closed with respect to «, then the restriction
p: L — N, of y to L also sends linear spaces of dimension a into lines. Hernce
the Jacobian of the restriction of 5 to a linear space closed with respect to «
falls by a — 1 in rank.

According to Lemma 10 if [, € o(I)* is a unit vector then a(l,) C a(l)L. We
choose vectors [; e {52} a((;)* by induction. This decomposes 7', into a direct
sum

Tp = a(l1)® e @a(lk) »

where of course a(l;) € a(l)*, i #j.

Since the dimension of «(l,) is a, we see that ak = n so that a divides n.

Let us choose an orthonormal basis I, - - - [, of T, in agreement with the
direct sum decomposition of T, given above, namely, each basis vector is in
one of the summands. Such a basis has the property that either I, € «(l;) or
I; € al)* for any i, ], i % j. Any basis with this property we call a basis which
respects «.

Lemma 14. Suppose a = 2. Let L, L, be completely orthogonal a-closed
subspaces of dimension 2. Let L, be a basis of L, and L,], of L,, both ortho-
normal. Then in this basis or the one obtained by reflection in L, (sending I,
— —1,) we have

) =9 1), 1) = =5, k) .

Furthermore, if L,,L,, L, are completely orthogonal a-closed subspaces of
dimension 2, and L1, L1, L], are respective orthonomal bases such that the
above relations hold on L,® L, and L, ® L,, then they also hold on L,® L,.

Proof. By Lemma 12 and the comment after Proposition 13 the restriction
of the Jacobian of 3 to L, @ L, falls in rank by 1. The restriction is

4
pled, + --- +xl) = Z xxm i, 1)
=

T 1

with derivatives
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4
7o =2 3l 1)
=
evaluated at /, + I,, which are

Ney = 2(77(11) + 77(11? la)) s Nz = 27](12, 13) )

Nz, = 2090, L) + 7)) , Nz, = 29, 1) .
Because the Jacobian falls in rank by 1, these four vectors must be dependent.
But (1), n(I,) are orthogonal to 5(I;,1;), i # j, and independent. Hence we
must have 7{,, ;) and 5(,,l,) linearly dependent. Since they are the same

length, we must have (I, ;) = +75(,, ). We now reverse the sign of I, if
necessary to achieve 5(l,, I;) = —»(l,,1,). Use Lemma 5 to write

77(117 lz)'ﬁ(lsa 14) + 77(117 13)-77(12, l4) -+ ﬁ(lxs 14)‘77(lz> ls) =0.
Because 5(l;,1,) = 0 we have
77(l1> la) ’77(lz: l4) = —'77(11> l4) '77(127 ls) .

But 5(l;,1;), i=1o0r 2, j =3 or 4, are all the same length and »(l,, ;) =
—n(l,, 1,). Hence »(l;, I;) = 5(l;, [,) and the first part of the lemma is completed.

Now this same argument applied to L, @ L, shows that (perhaps after send-
ing I, to —1)

77(ll> ls) = 77(127 ls) 5 77(ll> ls) = _77(12, ls) .
When we apply this argument to L, ® L; we find that
77(13, ls) = ;-77(14, ls) s 77(la> ls) = _277(1‘» ls) s

where 4 = -+ 1. We must show that 2 = + 1.

On L, @ L,P L, the Jacobian of » falls in rank by 1. We evaluate the deriva-
tives 7., i = 1, , 6, at the point I, + I, + L. 7., 74, 7, have respectively
the term 7(1), ;7(13), 77(15). Because these vectors are independent (they are of
length 1 and the inner product of any two is 1) and orthogonal to »(I;, [;}, i % j,
we see, much as before, that 5,,,7.,, 7., given by

7z, = 2yl 1) + 9L, L))
7z, = 20p{l, 1) + 9, B))
Nze = 2(77(ls> lz) + 77(1(” ls)) s

must be dependent. We use the above relations and those on L, @ L, to obtain

Nzg = _2(7](117 L) + 77(11’ ),
T4 — 2(77(113 lé) - )‘77(139 ls)) >
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Nze = 2(77(117 ls) + 77(13: ls)) .
Hence
0= /e A VEN A Nze = _'8(1 - 2)’7(lla 14) AN 77(13" ls) AN 77(117 ls) .

Using Lemma 11 and the fact that 7(l,, ;) = —2an(,, ), 2 = +1 we see that
(1), p(ls, 1) and 5, Iy are orthogonal. Because they are nonzero, they are
independent and so 4 = +1.

Remark. Quaternion multiplication on a basis /,[,[,/, may be defined by
—Ll, = I, = I, for i, ], k any cyclic permutationof 2, 3,4 and [}, = [|[; = I,
for all i and &2 = —I, for i = 2, 3,4. The conjugation is defined by I, = [, I,
= -1, =2,3,4.

Lemma 15. Suppose a = 4. Let L,, L, be two completely orthogonal sub-
spaces of dimension 4, both closed with respect to «. Let LLLl, be an ortho-
normal basis of L,. Then for either this basis or its reflection (sending |, — —1,)
there is an orthonormal basis Ll l, of L, such that y(l;,1;.) = +p(li, l..,) if
and only if 1], = 411, in the quaternion multiplication. Here both signs are
taken as positive or both negative and the indices range from 1 to 4.

Proof. Let [}, be the given basis of L,, and [l /., any orthonormal basis
of L,. We may restrict » to L, & L, and the Jacobian must still fall in rank by
3. The restriction is

Xk + e Xl = Z xgxm(l, 1)

1,9=1

We now compute the Jacobian of 5 at {;, + /,, 1 < &k < 4. Since

8
Nay = 2 Zl x, 1),
=

we have, at [, + I,

o = 200) + 29 1) s 7e, = 29 L) s 1< i< 4, ik,
750 = 29 + 29 )3 7 = 29l ), i=6,7,8.

Now 7{l;) = n(l) and 7{l,) are independent and both are orthogonal to 5(I;, k),
i < 4, and n(ly, {;), i > 5. The reason for this and for many similar such state-
ments in this proof is Lemma 11. Also 5(l;, l;), i < 4, are orthogonal to each
other and nonzero. 5n(l, ), { > 5, are orthogonal to each other and nonzero.
Since the rapk is 5, the sets {p(l;, ), { < 4} and {n(x, [;), i > 5} span the same
space, k = 1,2,3,4.

In order to render the remainder of the proof easier to follow we write out
the relations to be proved in the following tableau:
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77(11: 15) = 77(12’ ls) = 77(13, l7) = 77(147 ls) s

P, 1) = —9, L) = 9, I = —9(, 1),
) = —9l, ) = —9(l, L) = 9L, 1)
77(lla ls) = 77(12’ l7) = —'77(13’ ls) = —“77(14’ ls) .

We will not keep track of the signs but come back to them at the end.

Now 5(l, ), n, ), U, L), 5, 1) are orthogonal and 7L, l), 5, ly),
7y, 1D, 5, Iy) are orthogonal and span the same space as the first set. Also
y(l,, ;) is orthogonal to 7(l,, I;). We leave [,[;l,]l, alone and rotate [/, among
themselves in order to make (I, l)) coincide with 5(l;, ;). We are still free to
rotate I, [, among themselves. From Lemma 5 we obtain

77(11, l5) . 77(12’ ls) + 77(1‘.: lz) . 77(15’ ls) + 77(11’ ls) '77(125 ls) =0.

Since 5(l;, ) = 0 and 7, L) -5(,, ) = 5, 1,)* = %, we have 5(l;, ;) -7, )
= —1. Soy(,, L) = +yU,,1). Thus 5(,, 1), y(i,, Iy being orthogonal to 5(l,, I;)
and 7(l,, ;) are also orthogonal to 7(l,, ), 7(l;, ;) and hence in the same plane
as 7, 1), 5(,, ). Since 7(l, 1) and 7(l,l;) are both orthogonal to 5(I, ),
p(, I = 90, ). This leaves 5(I, ) = x5, ). We have done the first
two columns of the tableau except for signs. We are still free to rotate [[; in
their plane.

Now (1, ;) is orthogonal to y(l, I,), hence to »(l,, ), and also to 5(l,, ).
Hence it lies in the plane of 7(l,, ;) and »(,, ). Also 7(L, [y is orthogonal to
y(l, I, hence to 5(l, ), and also to 5(l,, ). Hence it lies in the plane of
7}(ln l;) and 7}(11: 1)

We now perform a rotation of [/, which leaves 5(l,, I;) and »(l,, l;) alone and
rotates 7(l,, 1), 95, I) so that 5, ;) coincides with y(l;, ;). We then have
ys, Iy) and 7(1,, [;) in the same direction.

Now 75(l,, 1) is orthogonal to (I, ;) and so to 5(l;, ). It is orthogonal to
7, I and so to 7(l,, ;). Since it is also orthogonal to 7(l,, ), it must lie along
pU,, ). Also y(,, I) is orthogonal to 5(;, ;) and so to 5(;, ;). It is orthogonal
to (I, ), so to 5(l;, 1), and of course to 7(l;, I;). Hence y(l,, [;) must lie along
p(,, I). We have now completed the first two rows of the tableau as well.

From Lemma 5 we know

7}(117 ls) . 7}(13, ls) + 7](lza 13) '7](15, ls.) + 7](11, ls) '7}(las ls) =0.

Hence using what we have proved so far we have 5(l,, i) - 5(l;, ;) = 0. So 5(l;, L)
is orthogonal to 75(l;, ), to 7(l,, 1) and so to »(l}, 1), and to 7(/,, ). Hence
»(L;, I) must lie along 7(l;, ;). The remainder now fills in easily to obtain the
entire set of relations up to signs.

To compute the signs we use

7(li, lj) 'ﬂ(lk, lm) + 7(li, lk) '7(1;‘, lm) + 7(11', lm) '77(lj5 lk) =0
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from Lemma 5. The choices of i, j, k, 7z which are not already zero are 1256,
1278, 3478, 3456, 1357, 1368, 2468, 2457, 1458, 2358, 1467, 2367. In addition
we may reflect sending /, — —l, or I, —» —1,, { = 5,6,7, 8, if we wish. In this
way we obtain a basis which satisfies the relations of the lemma exactly.

Lemma 16. Suppose a = 4. Let L,,L,, L, be completely orthogonal sub-
spaces of dimension 4, closed with respect t0 . Any basis of L, ® L, which
respects « in which the relations of Lemma 15 are satisfied may be extended
to a basis of L, ® L,® L, so that the relations are satisfied on L, ® L,. Further-
more in any basis of L, ® L, ® L, which respects a, if the relations of Lemma
15 are satisfied on L,® L, and L, & L, they are also satisfied on L,® L,.

Proof. Let [, be a unit vector in L,, [,L,,l, a basis for L,, and [/l a basis
for L, chosen so that the relations of Lemma 15 are satisfied on L, © L,. Since
L, lge L, I,cos 8 + lysin@ e Li. Let L(6) = a(l, cos § + I, sin §). By Lemma
10, L(6) and L, are completely orthogonal. By Lemma 12, L(6) @ L, is closed
with respect to . By applying Lemma 15 to L(§) ® L,, we see that the basis
provided by the lemma is continuous in §. Hence no reflection in L, can occur.
Thus we may find a basis [/, ,,/;, so that on L, @ L, the relations of Lemma
15 are satisfied in the basis [,L,11, 111 1,.

Now we show that in the basis [, - - -, [,, the relations of Lemma 15 are satis-
fied on L, @ L,. First, as in the proof of Lemma 15, by computing the rank at
I, + [,, we see that

ﬂ(lsy 19) AN ﬂ(lfn lw) A 0(15: lu) AN 77(15> 112)
= 277(15’ 19) A ﬂ(lm ls) A ﬂ(ln 19) A ﬂ(lw lg)

for 2 = 0. Then on L, @ L,® L, the rank of the Jacobian of 7 falls by 3. Thus
among 7., { = 1, ---,12, any ten are dependent. We evaluate the Jacobian
atl, + 4, + ¢, ¢t # 0. The vectors 7;,, 7., 7, are independent from each other
and from all the other 5,,. This is because they have, respectively, terms 7(l,),
(), ply) and %, i+ 1,5,9, are sums of terms of the form (I, [;), i # j.
Since 5(1)), y(ly), y(,) are orthogonal to all these vectors, they must be inde-
pendent of them. Furthermore, (1)), 7(l;), y(l;) are all unit vectors and the
inner product of any two is 1. Since no such triple of vectors can be linearly
dependent, among %2: 77w 014’ %s’ 057’ vzs’ 77-7-'10’ 77:11’ %m al'ly seven are
dependent.

Let A = 5z, N 2y A\ 2y N 5zg N 5z, N 72, €valuated at I, 4 I; 4 £, and
let

/110 = A(Z) A Nx1o » All = A(Z) A VLt Ai = /1(1) A D712 -

Then A,,, 4,,, 4,, must be identically zero. Ostensibly they are of sixth degree
in ¢; however by computing the rank at /, 4 /, we see that the highest degree
term is O because y(l;, 1), 7k, L), (s, 112) lie in the span of 5(l, L), (L, L),
(s, l,) as was stated above. Then compute the 5th degree terms of 4y, 4y,, 4,
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using the fact that the relations of Lemma 15 are satisfied on L, @ L, and
L,® L,. By equating these terms to zero we find that

77(15, lxo) = —77(1(5;19) > 77(ls> ln) = —77(17; 19 ) 7](157 llz) = _7](18: 19) .

This does not give us quite enough information, so we now evaluate the
Jacobian at I, + [; + ¢, and proceed as before. This time we may disregard
Day» Pass Yoy, DA Of the remaining, amy seven must be dependent. We choose
Dae N\ Dzg AN\ Dz I\ Qg AN\ Dag A Gz A\ 74, We compute the fifth degree term in
t and equate it to O obtaining

77(15, lu) = 77(137 lm) .

We next use

7 1) -9, In) + (s 1) 95, In) + 9y ) =913, 1) = O

from Lemma 5 and the fact that if 5(l;,1;) -9(s, ln) = =% then 5(;, 1) =
+9(lk, In), respectively because |7(;, 1;)| = |9y, )| = %. This enables us to
complete the proof that all relations of Lemma 15 are satisfied on L, ® L,.

As an example of the computations we show that »(l;, ;) = —7(l;, l;). Taking
into accocnt that the relations of Lemma 15 are satisfiedon L, © L, and L, @ L,
we obtain y,, evaluated at [, + [, + #l,:

9z = —(, ) — ;L) Nae = — UL 1) — i, 1)

Pz = — Uy 1) — 1l 1) 9 = 7, L) + s, L)

7z, = 7l ) + 9l 1) 7z = 70 1) + (s, L)
Dz = 7 h) + 7, L) -

We write p(l;, L) = ap(l, Iy) + by, I) + cpls, ;). The £ term of the wedge
of the above seven vectors after simplification is

7(11; llo) A 77(11> lu) AN 77(l1> 112) AN 7](ls> lg) AN 7](l7> lg) AN 77(18; 19)
A Ipy, 1) + ap(ly, ) + by, L) + oy, )] -

Now 7/(ll> ls)’ 7](11’ 17)’ 7](ll> ls)’ 7](ll> lm); 7](ll> ln)> 77(l1> 112); 77(165 lg); 7](l7> 19); 7](ls> 19)
are all nonzero and orthogonal to each other. Use Lemma 5 and the relations
of Lemma 15 satisfied on L, ® L, and L, @ L, to show orthogonality. Since
this must be zero we see that 1 + a = b = ¢ = 0 and 5(;, [,y)) = — 5 lo)-

Remark. Cayley multiplication on a basis [, - - -, [; of E* may be defined
as follows. Let [, - - -, I, be the seven points of a projective plane over Z, with
cyclic ordering of each line given as in the figure:
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A l

Define —1;l; =1, = I in case I];], has the given cyclic ordering. Define
further B = —1, i % 1, and [, = ], = I, for all i. For this definition see
Freudenthal [1]. Conjugation is defined by I, = I, I, = —I, i =2,--+,8.

Lemma 17. Suppose a = 8. Let L,, L, be two completely orthogonal sub-
spaces of dimension 8 closed with respect to «. Then there are bases I, - -+ I
of Lyand I - - - L, of L, so that y(l;,1;.0) = 9y, ln.s) if and only if in the
Cayley product given above 1,1 = + 1.l . Here both signs are taken as positive
or both as negative, and the indicies range from 1 to 8.

Proof. Letl, .-- I, be an orthonormal basis of L, and [, --. [ of L,. By
Lemma 12, y falls in rank by 7 on L, @ L,. Now

16
Doy = 2 _Z‘lxjy(li, L.
=
Fixk<8andm>9. Atl, + 1,

9z, = 29(L;, 1) i<8, i£k,
7z, = 29, 1) i>9,i%ftm,
Ny, = 27](lk) + 29, 1n)
Dzm = 29(m) + 29, 1n) -

Now »(l3), () are orthogonal to 5,,, i % k, m, and to 5(ly, l,). They are unit
vectors and independent since 5(l;) (1) = +. Thus »,,, 7., are not dependent
on 7,,, { #+ k,m, and therefore any 8 of »,,, { &, m, must be dependent. But
p(;, 1) for i < 8, i # k, are orthogonal and hence independent. Thus »(l;, i)
for i > 9, i %= m depends on {y(/;, [.), i < 8, i % k}. Similarly n(l;, 1), i <8,
i % k, depends on {3(I;, 1), i > 9, i + m}. Hence the sets

{7](117 lm)ai S 8} and {7](127 lk): i 2 9} >

for any m > 9, k£ < 8, all span the same space.
We write out the relations to be proved to make it easier to follow the argu-
ments. Because the list is large we abbreviate 7(;, ;) by ,j and —75({;, [;) by
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—1I,j. We also leave out the equal signs because we understand that the vectors
in each row are equal. The tableau of relation is:

1,9 2,10 3,11 4,12 5,13 6,14 7,15 8,16
1,16 -2,9 3,12 —4,11 5,15 —6,16 —7,13 8,14
1,11 —2,12 -3,9 4,10 —5,16 —6,15 7,14 8,13
1,12 2,11 —-3,10 —4,9 5,14 —6,13 7,16 8,15
1,13 —-2,15 3,16 —4,14 -5,9 6,12 7,10 —8,11
1,14 2,16 3,15 4,13 —-5,12 —-6,9 —-7,11 —-8,10
1,15 2,13 —3,14 —4,16 —5,10 6,11 —-7,9 8,12
1,16 —2,14 -3,13 4,15 511 6,10 —-7,12 -8,9

1), i=9,.--,16} and {p(,l), i=9, --., 16} are each sets of
orthogonal vectors spanning the same space. Furthermore »(l,, %) and 5, L)
are orthogonal. As [, - - -, [;; Totate among themselves, 5(l,, l,,) is carried into
any vector orthogonal to 5(l,, ;). In particular we may rotate so that 5(l;, l) =
7l 1,p). Then using Lemma 5 we find 5(l;, [,;) = —#(l,, l;). During this proof
each use of Lemma 5 refers to the formula:

v(li’lj)'v(lk’ lm) + 7](lz’lk)7](l_7’ l'm.) + 77(li> lm)'v(lj’ lk) = 0 5

where we use i,j,k,m =1,2,9,10.

Now {»(, 1), i =11, . .-, 16} and {p(l,, ), i = 11, - - -, 16} are orthogonal
sets spanning the same space. Furthermore y(/,, ;) and 7((,, l;;) are orthogonal.
Hence by rotating I, - - -, l;; among themselves we may achieve 5(/, ;) =
—7( 1,). By Lemma 5, 5, 1) = 5, 1), Again {5(,, 1), i = 13,-.-,16}
and {n(l,, 1) i = 13, - - -, 16} are orthogonal vectors spanning the same space.
Since (I, I;;) and 5(l,, {;;) are orthogonal, rotating I,,, /;;, /,; among themselves
we achieve 5(l}, ;) = —5{l,, l;). By Lemma 5, 5(,, l;;}) = 5(,, ;). This leaves
{nUy, L)), 5, L)} and {5y, ), 7(,, L))} spanning the same plane. But 5{l,, [,,)
and %(l,, l,,) are orthogonal. Hence by changing I ,; to —I,; if necessary we may
achieve 5(l,, l,,) = 7{l,, ;) and by Lemma 5, 5(,, ;) = -—7;(12, 1,). Thus the
first two columns of the tableau are equal.

Since 5, L) = 5y, I,) we see that {5(;, 1), i =3,---,8} and {y(, 1),
i=9,10, 13, 14, 15, 16} span the same space. We rotate [, - - -, [ among them-
selves to make (1, ) = 5(,,4,,). Apply Lemma 5 to 5(l;, ) = 5(l;, L,p) = (s, Ly)
to see that 5(l,, ;) = —y(,, L) and 5, ;) = —5(, I). Hence —yp{l,, ;) =
—7(l,, l;) and Lemma 5 applied to this gives —»(l,, &) = 5, 1).

The conditions 5(l;, ;) = 5, L) and 5, L) = —y(,, L) are preserved by
a rotation of [, [,; in their plane. Hence we may yet rotate /,,, /,; and not change
any of the relations so far established. But (4, I,,) and (4, ,¢) lie in the plane
spanned by 5(,, l;;) and (,, ;). Thus performing a rotation of I,,, l,, we may
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achieve p(l, l;;) = (L, ly). By Lemma 5, (L, L) = —y(l, ;). So the first
three columns of the tableau are equal.

Now {p(l;, L), i =4, ---,8} and {5(}, 1), i = 9, 13, 14, 15, 16} both span
the same space. Hence by rotating I, 1, - - -,l; we may achieve p(l;, 1) =
7(l,, lp). Using the fact that (%, &) = 5., L) = 9y, L) = 5, L») and apply-
ing Lemma 5 we see that 5(I}, ;) = —»p(,, ), —5{,, L) = 9y, L) and (7, 1)
= —p(, ;). Butnow {3([,, 1), i =13, ---,16}and {»(},,1,), i = 13, .- -, 16}
span the same space. Because 5(l;, 1)) = —75(l, L) and (i, L) = —5(,, 1)
we see that 5(l,, /,,) is orthogonal to 5(l,, 1), i = 14, 15, 16. Hence (I, ;) =
—Jn(,,1,), 2= +1. By Lemma 5 because y(l;, L)) = —5(l, ;) = 9y, Lg) =
—anp(l,, L) we see that 9, 1) = Ap(l,, L), —5(ly, L) = An(l,, L)) and —5(L;, 1)
= —n(l,, ;). Hence except for the determination of 4, the first four columns
of the tableau are equal.

Now {»(;, 1), i = 5,6, 7,8} lies in the span of {p(;, 1), i = 9,10, 11,12}.
By rotating among [//,l; we may assume that 5(l;, L) = 5L, ;). We apply
Lemma 5 successively to a list of relations each of which is true by an appli-
cation of Lemma 5 to an earlier member of the list and use of the fact that the
first four columns in the tableau are equal, except for 4. The list is »(l,, ) =
7](15’ Ly 7](lza L) = 77(15, 113) 5 —7](lza l14) = 7](lsa L) _7](l4a Iy = 77(15, L) 77(11’ I
= 77(l5a 114) 5 "’U(lsa Ly = 77(15: Ly 77(lla lls) = 7](15’ ln)? and 77(11, lls) = —U(lsa lw)-
The result is that = + 1 and the first five columns of the tableau are equal.

Now {n(;, 1), i = 6,7,8} and {5(};, ), i = 9, 10, 11} span the same space.
Hence by rotating [/l we may make 5(l,, L) = 5, ). We apply Lemma 5
to the relations of the first row as far as we know them and then to 5(l,, ;) =
9, L5) = 5y, 1) to conclude that the first six columns of the tableau are equal.

Again {p(;, 1), i = 7,8} and {5, ), »(l, [;,)} span the same plane. Thus
rotating [/, we may achieve 3(/,, 1) = 5(};,l;;). Applying Lemma 5 to the
relations of the first row as far as we know them and then to 5(}, Il =
—n(l;, 1) we conclude that the first seven columns of the tableau are equal.

By sending [; to —I; if necessary we see that (I, l))=x(l, ;). Applying
Lemma 5 to the relations of the first row finishes the proof.

Proof of the theorem. We may assume by Proposition 4 that all the geo-
desics of M are circles of radius 1. The unit tangent sphere 7537 is fibred by
great spheres of dimensions a — 1. Namely the point [ ¢ 757" lies on the great
sphere a(l) N TS32™'. By Proposition 13 they all have the same dimension
a — 1. But it is a theorem of topology that an (n — 1)-sphere can be fibred by
spheres of dimensiona — 1 only if a = 1,2,4,8, orn. Fora= 1,2 or4, n
may be any multiple of 1, 2, or 4 respectively. @ = n may hold for any » and
the only other case is a = 8 and n = 16.

If a = n then M is a unit n-sphere because all the geodesics through a point
have the same center. (See the remark after Proposition 7.) For the other
cases where « = 1,2,4 or 8 we use Lemma 11 and Lemmas 14-17 to find a
basis I; of T, such that »(l;, [;)-7(ls, I») are known for all i, , k, m.
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In the cases where ¢ = 1,2,4 or 8 let V be the given embeddings of RP~,
CP", LP™, OF® respectively. Perform a dilatation of the Euclidean space so
that the geodesics of V have radius 1, and assume V and M lie in the same
Euclidean space.

Now ¥V is a manifold with planar geodesics. Hence by our previous calcu-
lations we may find a basis [, of T,V such that the quantities 7, (l;y, ;) -
vy, Lny) have the calculated values.

Perform a translation to make M and V coincide at one point. Then perform
a rotation about that point to make the tangent planes of M and V coincide
at that one point. Let [; be the basis in the common tangent plane in which
9, 1) - n(le, 1) were computed, and I, the corresponding basis for V. Rotate
and reflect about the common point until /; coincides with /.

Now if two sets of vectors have identical inner products (for corresponding
pairs), we may perform a rotation and reflection about the origin to make them
agree. Using this fact we may perform a rotation and reflection in the normal
space, leaving the common tangent plane pointwise fixed to make »,(l;,[;) =
y(l;,1;). This implies that 5 = 5, at that point. Hence the geodesics of each
manifold through that point coincide so that the manifolds coincide locally. By
analytic continuation M is either an open subset of an n-plane or congruent to
a dilatation of an open subset of a manifold in the list.
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